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THE OPTICAL CHARACTERISTICS OF ABSORBING MEDIA IN THE INFRARED REGION 
USING THE MODEL OF A RESONATOR WITH VISCOUS FRICTION 

2 7 7 0  2- . 
The classical model of a resonator with viscous friction I 6 7 2  

is used for construction of a corrected resonance curve of 
continuous bands of strong absorption in crystals. A method 
of construction of a spectral curve of reflection from three 
of its values, based on the assumption of correspondence of 
amplitudes and phases of forced oscillations and reflection, 
is proposed. 
graphically from the corrected resonance curve. In the case 
of continuous bands of strong absorption a combination of the 
suggested method with the Robinson-Bode method permits making 
the determination of the phase of the forced oscillations more 
precise, and a lso  allows for discrepancies caused by schema- 
tism of the model used. Comparison of some calculated data 
with the experimental data for a number of alkali halide 
crystals showed satisfactory agreement. 

The optical constants 2 and & are determined 

&,- 

1. The present paper is an examination of the infrared spectra of solids 

having strong continuous bands of absorption using the model of a resonator 

with viscous friction. 

~ 

The known solutions of the equation of forced oscillations may be consid- 

ered as parametric equations of a curve on the amplitude-phase plane. On this 

plane, each point is characterized (in polar coordinates) by a phase 6 and am- 

plitude p .  Here the frequency serves as a parameter. Eliminating it, as a re- 

sult of a joint examination of both solutions, one can obtain the expression 

(\/cos26 + 4Qzsina8 + cod), (1) 
Aa a=- 
2 ,  - -- - 

which is the equation of the corrected resonance curve on the amplitude-phase 

plane. Here a is the amplitude corresponding to the phase CJ (phase displace- 

ment between the constraining force and the constrained oscillation), Aa is the 

amplitude at 6 = 0, Q = k, where wo is the resonating frequency during the ab- 
Y 

/Numbers in the margin indicate pagination of the original foreign text. 
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sence of damping, y is the coefficient of damping. 

sin2Q, then equation (1) for a large part of the curve in a first approximation 

may be replaced by the equation describing the circumference in the plane under 

If Q > 2 and cos2a << 4Q2 - 

consideration, 
a*= up cos (8 - 8,) , 

and where tg6p = 24, and AP is the phase displacement at a maximal value of the 

amplitude a 

ment is to 90" and the smaller the amplitude at a phase displacement equal to 

zero. In the region of small values of 6, the expression (2) does not de- 1673 

The less the damping the closer this resonating phase displace- 
P 

scribe the phenomenon at any values of Q. At 6 = 0 the equation of the circum- 

ference (2) gives the value a(6 = 0) = instead of the actual value ha. This 
2 

permits from the values of the maximal amplitude a and the amplitude Aa at 6 = 

0 ')construction of the corrected resonance curve and determination of 6p and Q 

(see Figure 1, A). In addition the section AB of the corrected resonance curve 

P 

~ 

is constructed from equation (1). Experience shows that in practice it can be 

constructed arbitrarily, not introducing noticeable errors. 

Suppose that the amplitude and phase of reflection corresponds to the am- 

plitude and phase of the constrained oscillations of a resonator with viscous 

friction. In this case, knowing the connection of the optical constants with 

the complex coefficient of reflection = peid, one can determine the optical 

constants by the values of the amplitude and phase of the constrained oscilla- 

tions of the resonator describing the system. The connection of the optical 

constants with the complex coefficient of reflection bears a universal charac- 

ter and in no way is connected with the character of the oscillation of the 

'The expression of a and Aa from the value of the coefficient of reflection of 
the dielectric consfant and the index of refraction of the material will be 
given below. 
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resonators of the medium. The model of this resonator with viscous friction 

serves only as an approximation for the construction of a corrected resonance 

curve in the plane of the complex coefficient of reflection. 

In the plane under consideration, the distribution of the complex coeffi- 
+ cient of reflection a = pei6 is reflected according to the frequencies for a 

separate band by a continuous family of vectors, set aside from the origin of 

the coordinates, the ends of which describe a curve close to the circumference. 

In the case of the presence of several bands for each value of the frequency 

the corresponding vectors are added. In Figure lB, borrowed from the paper 

of Robinson and Price [l], presents the curve of the complex coefficient of 

reflection for a band of teflon of about 8.511, constructed from the experimental 

points for each value of the frequency. 

optical constants from measurements of the values of the coefficient of reflec- 

3 

Having the purpose of determining the 



tion, the author did not pay attention to the correct form of the curves ob- 

tained. Figure 1B can be considered as a superposition of two resonance 

curves described by formula (1). Thus, the results of Robinson and Price's 

work, to which we shall return below, confirm the applicability of the proposed 

model for determining the optical curves of substances having strong infrared 

absorption bands. In Figure 1B two sets of circumferences are also drawn 

representing a coordinate network with the help of which, it is possible to 

determine, for each point of the resonance curve, both optical constants. The 

method of constructing such a network will be described below. 1674 
The connection of the relative values of the amplitude with the wavelength 

values can be found exactly (like the equality (1)) from the solution of the 

equation of the constrained oscillations of a resonator with viscous friction 

and has the form 
1 

where a is the reflection amplitude at wavelength A, % is the resonance am- 

plitude at wavelength Ap and F(Q) is determined by the expression 

At Q 2 6,F(Q) = Q, correct within 1% (see Figure 2 ) .  

2Equation ( 3 )  is an exact expression of the corrected resonance curve. Using 
this expression it is possible to obtain a corrected resonance curve applicable 
to radio engineering (2) , 

. -y F 

= 2WAU Moreover, Q = 5 = - wo [e] u2* Y A p  
with the assumption F(Q) = Q and 1 - 

(Ala is the so-called half thickness) and corresponds to the quality factor 
(the ratio of the wave resistance to the activity) at the frequency w0. 

4 



Figure 2 .  

In practice, however, it is more convenient not to use expression (3) but 

the parametric expression 

obtained from (3) if you assume = C O S B .  Comparison of the latter expression 

with expression (2) shows that in the region where the resonance curve is suf- 

ficiently close to the circumference, B = 6 - 6p. 

ning of the curve of Figure 1A) 

aP 
~ 

At A = O,a = 0 (the begin- 

at h +. m a +. Aa. Then on the basis of ex- 

pression (3) we have 

AaiJi + F4 (Q) (5) 

or solving this equation for ap and substituting its value in (3)  we obtain 

2 .  Using the equations of the first section it is easy to construct, /675 

in the plane of the complex coefficient of reflectio-the corrected resonance 

curve (l), to plot on it in accordance with (3) the values of the wavelength, 

and also, constructing on the same circumference the corresponding network of 

5 



the optical constants3 and to obtain their spectral pattern (Figure 1A). 

1 0 

Figure 3. 

For construction of the network the expression linking the optical con- 

stants of the substance with the complex coefficient of reflection is used in 

the case of normal slope 

~ 

n - I - i k  p&=- 
B+ 1 - ik ’ 

or in a different form 
‘ 2 - 1  

d=S-+T1v 

where z ’  = u + iv is the complex coefficient of reflection and z = x + iy is 
the complex index of refraction. 

Expressing u and v byz,,and -_ y we obtain 

9 

substituting y = k (constant) and carrying out the 

equation of the circumference 

3Such a netwoz was used (without derivation) by a 

._ 
conversion, we obtain the 

Q 
number of investigators (see 

for example, Male [3] and Robinson [l, 4 1 ) .  
tions a discussion of this graphic connection. 

We shall give in later communica- 

6 



with radius 1 and the center located at the point u = 1 and v = - Giving k k k' 

different values we obtain a set of circumferences passing through the point 

u = 1, v = 0, the centers of which' lie on the line u = 1 (see Figure 3 ) .  

Similarly, substituting the value x = p we obtain the equation of the circum- 

I 6 7 6  

f erences 

with centers on the axis u = 0 and radii 1 , passing through the point u = 
n + l  

1, v = 0. 

Thus, the components of the complex index of refraction in the plane of the 

complex coefficient of reflection are represented by two sets of circumferences. 

At zero absorption (k = 0) the circumference corresponds with the infinitely 

large radius passing through the point u = 1, v = 0, that is, the direct, cor- 

responding phase shift at 0 or 180O. The point p = 0 corresponds to the inter- 

section of a direct transparency and the circumference p = 1, that is, with the 
- 

absence of absorption and an index of refraction equal to unity, the medium will 

be an optical vacuum -- there will be no reflection. At A >> Ap where the sub- 

stance again becomes transparent (implies k = 0), the coefficient of reflection 

p, = ha. 

refraction. 

If in the substance there are some natural frequencies divided by areas of 

The value of pm is linked moreover with the corresponding index of 

transparency, then the resonance curve for each of the bands must be construct- 

ed from the point pi on the axis of transparency. 

flection for any X in the region of this band is equal to the sum of the vector 

P = P i -  

transparency to the point pi and the vector, proceeding from the point Pi, de- 

termined by the given band. 

Then the coefficient of re- 

-11i-1 , proceeding from the point p = 0 and going along the axis of ni + 1 

With long waves much larger than the long-wave 

7 
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infrared band, it again attains the value k = 0, while the coefficient of re- 

flection is constant and is linked with the complete static dielectric constant 

by the relationship 

(see Figure 4 ,  giving the normal curves of dispersion and adsorption). ha (see 

(5)) in this case is determined by the expression 

‘Aa=p,- Po* (7) 

The presence of natural frequencies in the longer wave regions does not 

limit the method, 

ficient of reflection, instead of p,, after the given band. On theother hand, it 

can be easily shownby geometry that the diameter of the circumference (2) de- 

scribing the resonance curve is equal to 

Moreover, it is necessary to use the value of the set coef- 

‘ 2  2 
~ zQ,- Po - PbQm 

9 

I 
2pn 

a,, = 

where p, is the maximum amplitude of reflection. 

In the case of some overlapping bands it is necessary to construct a num- 

ber of corrected resonance curves (see below, section 4 ) ,  and then for the cor- 

responding wavelength to add vectoriallythe partial values of the complex coef- 

ficient of reflection. The corrected resonance curve of the system which is 

obtained permits the graphic determination of the spectral value of the optical 

curves. 

Therefore, knowing the dielectric constant of the substance, the maximum 

coefficient of reflection in the given band, the index of refraction in the re- 

tion of transparency from its shortwave side and the wavelength at the maximum 

reflection (or at the maximum absorption) one can determine by the graphic 

method the optical constants in the region of the given band and also the 

/677 
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s p e c t r a l  curve of r e f l e c t i o n .  

We s h a l l  recal l  b r i e f l y  t h e  series of ope ra t ions  he re :  

a) t h e  amplitude of r e f l e c t i o n  both be fo re  and a f t e r  t h e  g iven  band, and 

corresponding t o  p 

E and t h e  index of r e f r a c t i o n  po  ( s e e  f i g u r e  4 ) ;  

and p,, i s  found from t h e  va lues  of t h e  d i e l e c t r i c  cons tan t  
0 

Figure 4 .  

b) us ing  t h e  va lue  of t h e  amplitude of t h e  maximum c o e f f i c i e n t  of r e f l e c -  

t i o n  p = r ,  po and p,, t h e  diameter of t h e  circumference a us ing  equa- 
m max P 

___ 
t i o n  (8) and Aa us ing  equat ion  (7) are determined and t h e  resonance curve is  

cons t ruc t ed  (see Figure  5 ) ;  

Figure 5. 

\ 

n = p  

c)  having determined A a  and a , F(Q) is  c a l c u l a t e d  us ing  express ion  (5);  
P 

9 
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d) having the value of F(Q) from equation (3)  (or its equivalent paramet- 

ric equation) the relative wavelength scale is arranged along the resonance 

curve; 

e) finding the point of contact of the circumference (2)  with one of the 

circumferences k = const. (see Figure 1B), knowing the wavelength at maximum 

absorption, the absolute wavelength scale is determined along the resonance 

curve. The value of the wavelengths at maximum reflection may be used for this 

purpose, at the same time the corresponding point on the resonance curve is de- 

termined from the place where it intersects with the straight line joining the 

origin of the coordinates (p = 0 )  with the center of the circumference (2); 

f) the value of p is read for each wavelength from the network p,6. The 

set of the values of p 2  = R determines the spectral curve of reflection. 

g) from the networks p and k the optical curves are plotted for each wave- 

length and the appropriate spectral curves are constructed. 

If the curve p 2  = R differs from the experimental curve then it is neces- 

sary to introduce into the values of the complex coefficient of reflection 

suitable corrections (see section 5) which will enable one both to explain the 

reasons for these discrepancies and to determine more precisely the optical 

curves. 

3 .  The graphic method considered above of course only permits an approxi- 

mate determination of the spectral shape of the optical curves. 

the region of small absorptions the wavelength scale along the resonance curve 

becomes very fragmentary, and the curve itself (1) differs significantly from 

the circumference (2). In addition in the region where the layer of material 

a few millimeters thick is almost transparent more exact data concerning the 

indices of refraction is necessary (for example, for the requirements of instru- 

Moreover, in 
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ment making). A l l  t h i s  compels one t o  reject approximate g raph ic  methods i n  

t h i s  case, e s p e c i a l l y  s i n c e  f o r  a s u f f i c i e n t l y  s m a l l  c o e f f i c i e n t  of absorp- /678 

t i o n  k, t h e  problem can be  solved a n a l y t i c a l l y  by t h e  exact equat ion  ( 6 ) .  

s m a l l  k t h e  v e c t o r  2 is d i r e c t e d  along t h e  axis of t ransparency  wi th  a very  

l a r g e  degree of accuracy. 

With 

Then on the  b a s i s  of t h e  network p on t h e  p lane  of 

(+ with  t h e  complex c o e f f i c i e n t  of r e f l e c t i o n  (Figure 3) 2 a =-- 2 
n + l  n o + l  

S u b s t i t u t i n g  t h e s e  va lues  i n  2 -  2 
nm + 1' X < X p ,  - with  X > Xp) and Aa = 

equat ion  ( 6 )  and convert ing i t ,  w e  ob ta in  t h e  fol lowing express ion  f o r  p(A) 

Po + 1 

- P(X) = P, 
I f  n w + l  

nw - "0 

This  express ion  is t r u e  only i n  t h e  neighborhood of t h e  a x i s  of t ranspar -  

ency, b u t  t h e  cor rec ted  resonance curve,  as w e  know, approaches t h e  a x i s  of 

~ t ransparency  i n  two reg ions ,  i n  both cases  t h e  formula can be considerably s i m -  - 

p l i f  i e d .  

a) A t  2X < X, ( t h e  r eg ion  of t ransparency be fo re  t h e  abso rp t ion  band) 1 << 

$(Q) E - then  i n  t h e  corresponding approximation w e  o b t a i n  wi th  a 

g r e a t  degree  of accuracy 

where 

b) A t  A > 4AOy which corresponds t o  t h e  reg ion  of t ransparency a f t e r  t h e  

a b s o r p t i o n  band, 

where 

11 
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Formulas (9) and (10) express dispersion of the material with the help of 

those parameters which are used for describing its optical curves in the region 

of a strong absorption band. In the regions where two bands show up the dis- 

persion the formula takes the form 

where 

and B and C have the same meaning as in formula (9). Generalization of the 

formula to the case of many bands does not present any difficulty. 

4. For illustration of the method, a comparison was made of the calcu- /679 
w 

lated data with the experimental data (well-known in the literature) from the 

optical characteristics of alkali halide crystals and in particular the NaF cry- 

s ta14. 

The powerful infrared absorption band in these cases is due to the natural 

oscillations of the crystal lattice, combined with the relative displacements 

of the systems of ions of different charge which form the crystal. These bscil- 

lations can be roughly considered as natural oscillations of the resonator. 

Supposing that in this case the amplitude and the phase of the complex coeffi- 

cient of reflection corresponds to the amplitude and phase of the constrained 

oscillations in the presence of viscous friction, we shall use our model to 

determine the optical curves of these substances. 

The reflection spectrum of the after rays and the dispersion of the alkali 

halide crystals we found by the method described above, using the known values 

of the dielectric constant E, the index of refraction PO (see Figure 4), the 

4A detailed consideration of all alkali halide crystals will be published sep- 
arately. 
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wavelengths a t  maximum absorp t ion  and t h e  va lue  of t h e  maximal amplitude of t h e  

c o e f f i c i e n t s  of r e f l e c t i o n  i n  t h e  region of t h e  " a f t e r  raysr r  pm. 

The f i r s t  f o u r  columns of Table 1 present  t h e  o r i g i n a l  known experimental  

d a t a  f o r  the NaF c r y s t a l ,  and t h e  following columns given t h e  va lues  of t h e  

q u a n t i t i e s  found us ing  formulas ( 7 ) ,  (8), (5) and (9) which enable  one t o  con- 

s t r u c t  t h e  cor rec ted  resonance curve and t h e  d i s p e r s i o n  formula. 

Table 1 

C h a r a c t e r i s t i c s  of t h e  NaF C r y s t a l  

6.0 1.3198 40.6 0.97 0.14 0.42 0.845 2.83 2.89 1 .227  1.53 32.8 40.6 

*The va lue  of p , e q u a l l i n g  from 0.93 t o  0.97, can be considered as con- 
s t a n t  f o r  a l l  a lka l imhal ides  s i n c e  the d i f f e r e n c e  
exceed t h e  limits of accuracy of t h e  measurement. 

of t h e  known va lues  does not  

It is  i n t e r e s t i n g  t o  n o t e  t h a t  t h e  q u a n t i t y  Jch, s tanding  f o r  t h e  charac- 
P 

ter is t ic  wavelength, co inc ides  wi th  t h e  q u a n t i t y  f o r  a l l  t h e  c r y s t a l s  ex- 

amined, which is  i n  good agreement with r e c e n t  experimental  and t h e o r e t i c a l  

d a t a  [8 ,  91. The va lues  of t h e  index of r e f r a c t i o n  of sodium f l u o r i d e  calcu- 

l a t e d  f o r  a number of wavelengths from t h e  d a t a  i n  Table 2 using formula (9) 

are i n  good agreement wi th  known experimental  da t a .  

k 

Table 2 

I 1 1 ° 1  d 6 1 6 1 ' J  I I I I 

2 

Experimental;  (2) Calculated 

F igure ,  6 g ives  t h e  cor rec ted  resonance curve s p e c i f i e d  by t h e  b a s i c  

13 



oscillation of the crystal lattice of the NaF crystal. The absolute scale /680 

of wavelengths is plotted on the curve on the basis of calculations according 
? - 

to formula (3 )  and the known value Xk = 40.6~. The relation 2 = f 9 F(Q) (. a P 
L d 

described by expression ( 3 ) ,  for convenience may be expressed graphically, for 

example, as a set of curves depending on the parameter - . Using Figure 6, it 

is possible to determine the value of the wavelength at maximum reflection -- 

the so-called wavelength of the "after rays" and the wavelength of maximum pow- 

a 
a? 

der transmission in air (the Christiansen-Pfund filter). The maximum transmis- 

sion of an absorbing powder naturally cannot correspond exactly to the value 

= 1, and preferably must correspond to the minimum reflection and even must 

be somewhat displaced from it in the direction of the axis of transparency. 

Values, found by construction of corrected resonance curves of the type pre- 

sented in Figure 6, of wavelengths of "after rays" and of wavelengths of maxi- 

mqn transmission of Christiansen-Pfund filters for a number of crystals are 
~ 

compared in Table 3 with known experimental data. 

of the applicability of the model developed toalkalihalide crystals of the 

The correspondence is proof 

type under consideration. 

Taking the values of the amplitude of the coefficient of reflection for 

each wavelength from the graph (Figure 6), it is easy to construct a spectral 

curve of reflection of the NaF crystal (at normal slope). The corresponding 

curve in Figure 7 is compared with known experimental data [ll]. 

Combining the resonance curve (Figure 6 )  with a coordinate net of opti- /681 

cal constants (Figure 3) one can also determine the value of the optical con- 

stants for each wavelength in the absorption band region. 

trates the agreement of the data thus obtained for NaF with lcnown experimental 

Figure 7 B  illus- 

values. In Figure 7A and 7B there is observed some divergence of the cal- 

14 
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Figure 6 .  (1) Amplitude 

I681 
Table 3 

I I I I 

(1) Crystal; (2) "After rays"; (3 )  Christiansen-Pfund Filter; 
( 4 )  Experimental; (5) Calculated. 

culated data from the experimental values which is caused by the presence of a 

second infrared band in the crystal. Such a band is characteristic of allalkali 

halide crystals. It is a combined optical-accoustical band, the activity of 

which in infrared absorption is caused by the appearance of a dynamic dipole 

15 



moment due t o  t h e  deformation of the ions  dur ing  t h e  b a s i c  o s c i l l a t i o n  of t h e  

l a t t i ce .  Remembering t h a t  Q = - a0 E 2, from which t h e  c o e f f i c i e n t  of damping y Y Y  
i s  p ropor t iona l  t o  -, 1 

XPQ 
and assuming t h a t  y f o r  t h e  second band i s  t h e  same as 

f o r  t h e  f i r s t ,  w e  o b t a i n  AIQl = A2Q2. 

t h e  f i r s t  and second bands. 

Here t h e  i n d i c e s  "1" and "2" des igna te  

Figure 7.  

1- Ca lcu la t ion  f o r  two bands, 2 - c a l c u l a t i o n s  f o r  f i r s t  
band, 3 - experimental  d a t a  f o r  A (11) and f o r  B (13). 

For sodium f l u o r i d e  A 1  = 32.8, A2 = 25p [111. On t h e  b a s i s  of Table 1 /682 

and formula ( 4 )  Q1 = 2.98, from which 

Q~ = 3.2802.98 = 3.9 
25 

Therefore ,  t h e  second band covers t h e  s p e c t r a l  r eg ion  more narrowly, and 

being l o c a t e d  i q  t h e  wing of t h e  primary band, has  p r a c t i c a l l y  no e f f e c t  on the  

d i s p e r s i o n  (Table 2) and on t h e  p o s i t i o n  of t h e  powder t ransmiss ion  band (Table 

3). The va lues  of t h e  p a r t i a l  r e f l e c t i o n s  of a f o r  each wavelength i n  t h e  pre- 
-f 

16 
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sence of two overlapping bands must be added vectorially. 

seen that in addition a more complicated pattern is obtained than in the con- 

struction of a simple resonance curve (see Figure 1 B  where the diagram of the 

complex coefficient of reflection of teflon in the region of two overlapping 

bands at 8 . 5 ~  is presented). 

In Figure 8 it is 

, .  AMnnumyaa 1 _ _  

Figure 8. (1) Amplitude 

Figure 8 is constructed proceeding from the following assumptions: a) the 

resonance curve of the primary oscillation varies according to a scale which 

can be physically substantiated by a decrease in the effective dipole moment 

taking part in the primary oscillation at the expense of creating dynamic di- 

pole moments; b) the resonance curve of the second band is constructed on the 

basis of the experimental value of the wavelength of its maximum reflection and 

17 



"qual i ty"  Q which is found by assuming t h e  constancy of y.  

The scales of t h e  resonance curves are s e l e c t e d  s o  t h a t  they s a t i s f y  t h e  

experimental  va lues  of t h e  c o e f f i c i e n t s  of r e f l e c t i o n  a t  both maximums. 

F igure  7A presen t s  t h e  va lues  of t h e  s p e c t r a l  c o e f f i c i e n t s  of r e f l e c t i o n / 6 8 3  

of NaF found us ing  one and two bands,  and t h e  experimental  da t a .  

s a t i s f a c t o r y  agreement w a s  obtained.  F igure  7B p re sen t s  t h e  va lues  of t h e  

o p t i c a l  cons tan ts  i n  t h e  reg ion  of s t rong  absorp t ion  and a comparison wi th  

experimental  d a t a  is made. 

band has  a very  s m a l l  e f f e c t  on t h e  o p t i c a l  cons t an t s  even i n  NaF, i n  which i t  

is  very  s t rong ly  expressed. 

Completely 

From t h i s  comparison i t  i s  seen  t h a t  t h e  second 

Therefore ,  according t o  t h e  d a t a  on t h e  index of r e f r a c t i o n ,  t h e  d i e l e c t r i c  

cons t an t  and t h e  wavelength a t  maximum absorp t ion ,  i t  is  p o s s i b l e  t o  determine 

q u i t e  e x a c t l y  t h e  o p t i c a l  c h a r a c t e r i s t i c s  of a l k a l i  h a l i d e  c r y s t a l s ,  I n  1950 

Roberts E141 proposed a method of c a l c u l a t i n g  t h e s e  c h a r a c t e r i s t i c s  (po, E, A k ) ,  

proceeding from t h e  p r o p e r t i e s  of ions ,  which al lows one, i n  t h i s  way, t o  pre- 

d i c t  t h e  o p t i c a l  c h a r a c t e r i s t i c s  of substances no t  y e t  obtained.  W e  hope t o  go 

i n t o  th i s  i n  d e t a i l  later.  

5. Comparison wi th  experimental  d a t a  proves t h e  f r u i t f u l n e s s  of t h e  meth- 

od based on the s imples t  model of a resonator  wi th  v iscous  f r i c t i o n  f o r  de t e r -  

mining t h e  o p t i c a l  c h a r a c t e r i s t i c s  of i o n i c  c r y s t a l s  i n  t h e  i n f r a r e d  reg ion  of 

t h e  spectrum. It is  necessary  t o  mention t h a t  i n  1951 Simon [15] attempted t o  

u s e  r a d i o  engineer ing impedance concepts t o  s tudy t h e  s p e c t r a l  c h a r a c t e r i s t i c s  

of q u a r t z  i n  t h e  reg ion  of t h e  primary peak of r e f l e c t i o n .  

sugges ted  t h a t  t h e  o s c i l l a t i o n  of the  " resonators  of t h e  medium'' are undamped 

and considered t h e  r e f l e c t i o n  be fo re  and a f t e r  t h e  band as a background, neu- 

t r a l i z i n g  i t  and s u b s t r a c t i n g  i t  s c a l a r l y  from a l l  t h e  va lues  of t h e  c o e f f i -  

I n  a d d i t i o n ,  he  
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cientsofreflection. 

pers [15, 161. 

A s  a result he was forced to use two methods in his pa- 

The method suggested by us proceeds from a knowledge of three basic para- 

meters which characterize crystals, -- the dielectric constant E, the index of 

refraction po and the wavelength corresponding to the primary absorption maxi- 

mum in the infrared region hk; we note that these same parameters are used by 

Pekar in the polaron therory which he proposed [17]. 

illustrated here for the case of isotropes in an optical relation in the medium, 

however, it can be expanded to the case of the simplest anisotropes of the med- 

ium for which it is sufficient for the coefficient of normal reflection to take 

the coefficient of normal reflection of plane-polarized radiation, the plane of 

polarization of which is consequently oriented to the elementary vibrators of 

the material. Figure 9A,  B is confirmation of this, borrowed from the cited 

work of Robinson and Price [l] in which corrected resonance curves of a mono- 

crystal of urea are plotted in the region of 311 for light polarized in differ- 

ent planes. Robinson plotted his curves from the points -- for each wavelength 

the amplitude and phase of reflection was first determined and then the appro- 

priate point was plotted on the amplitude-phase plane and, connecting the set 

of points, he constructed the curves. The similarity of the shape of his 

curves is independent verification of the method which we developed in the 

given case. T. S. Robinson used an extremely intelligent and fruitful method 

of finding the phase of reflection -- he borrowed the graphical method devel- 

oped by Bode [18] in the theory of electrical bonds, based on the connection 

of the complex linear system of phase alteration at a given frequency with the 

amplitude-frequency characteristic of the system. This method is not directly 

applicable to strong absorption bands, since with its use very large errors are 

The method considered is 

~ 
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gradually accumulated in determining the phase. 

ing a structure,a combination of the Robinson-Bode method with the method ex- 

amined above should be fruitful. 

For cases of strong bands hav- 

Thus, the suggested method can be used in the general case of complex / 6 8 4  

bands of strong absorption for determining the optical characteristics from the 

reflection spectrum at normal slope. In addition, from the experimentally de- 

termined values of the amplitudes and coefficients of reflection before and 

after the given band p o  and pm and from the value of the amplitude and wave- 

length at maximum reflection pm and A, the approximate values of the spectral 

distribution of the amplitude and phase of the complex coefficient of reflec- 

tion are found graphically (by the method under consideration). The difference 

between the spectral values of the amplitudes of reflection, found by experi- 

ment and from the model, as a function of the wavelength, is treated by the 

Bode-Robinson method [1, 4 ,  181 finding at each wavelength the additional phase 
~ 

shift. Then from the values of p o ( h )  + A p ( A )  = p ( h )  and 60(A) + A 6 ( A )  = & ( A )  

Awnmmyaa 3 Amnnumyda 3 

Figure 9. 

A -- Electrical vector, parallel to the optical axis; B -- electrical 
vector, perpendicular to the optical axis. 1) Phase; 2) Part of the 
curve X 2; 3) Amplitude 
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t h e  d e f i n i t i v e  co r rec t ed  resonance curve of t h e  system i s  cons t ruc ted  and t h e  

s p e c t r a l  va lues  of t h e  o p t i c a l  cons tan ts  are read from t h e  graph. 

method, on t h e  o t h e r  hand, t h e  e r r o r  connected w i t h  t h e  de te rmina t ion  of phase 

by t h e  Bode-Robinson method is s u b s t a n t i a l l y  decreased,  and on t h e  o the r  hand 

p o s s i b l e  d i sc repanc ie s  due t o  t h e  approximate n a t u r e  of t h e  model used are 

e l imina ted .  

By t h i s  

I n  conclus ion  t h e  au thor  expresses  thanks t o  B. S. Neporent f o r  cont inuing 

interest  and support  and a l s o  t o  V. L. Makedonskiy f o r  va luab le  d i scuss ion  of a 

number of problems. 
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